Photocatalytic Degradation of Acridine Orange over NaBiO3 Driven by Visible Light Irradiation

نویسندگان

  • Chung-Shin Lu
  • Chiing-Chang Chen
  • Ling-Kuen Huang
  • Hsiao-Fang Lai
چکیده

The photocatalytic degradation of acridine orange (AO) dye by NaBiO3 photocatalyst under visible light irradiation was investigated systematically. The NaBiO3 photocatalyst exhibited a higher photocatalytic activity compared to the P25 photocatalyst. After 160 min of photocatalytic reaction, the degradation rate of AO could reach to 99% in appropriate conditions. Factors, such as catalyst dosage, solution pH, initial AO concentration and the presence of anions, were found to influence the degradation rate. To scrutinize the mechanistic details of the dye photodegradation, the intermediates of the processes were separated, identified and characterized by the HPLC-ESI-MS technique. The analytical results indicated that the N-de-methylation degradation of AO dye took place in a stepwise manner to yield mono-, di-, triand tetra-N-de-methylated AO species generated during the processes. The probable photodegradation pathways were proposed and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation

Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...

متن کامل

The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite

Due to the pollution of dyeing and textile industry wastewaters in different colors and the need to remove these pollutants from the wastewaters, it is necessary to study and develop effective and efficient technology solutions required. To remove dye from aqueous solutions, photodegradation is employed as an effectively simple way. Thus, the BiOBr photocatalyst was chemically made by synthesis...

متن کامل

Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles

Nanoparticles of the ZnO and TiO2 were synthesized and the physicochemical properties of the compounds were characterized by IR, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD patterns of the ZnO and TiO2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. Aggregated nanoparticles of Z...

متن کامل

One-pot synthesis of etched Cu2O cubes with exposed {110} facets with enhanced visible-light-driven photocatalytic activity.

Novel etched Cu2O cubes with exposed {110} facets are synthesized via an oxidative etching method at room temperature. The photocatalytic performance indicates that these architectures show higher photocatalytic activity than that of the normal Cu2O cubes in the degradation of methylene orange.

متن کامل

Photodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution

In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting diode lamp. Response surface methodology was successfully employed to optimize the treatment of acid orange 10 dye and assess the interactive terms of four factors. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013